
DATABASE MANAGEMENT

SYSTEM

Revision 1.0

1 December, 2016

Er. Gaurav Khandelwal

Professor

Department of Computer Science

KCRI COLLEGE

ALWAR 301001 RAJASTHAN

2016-2017

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 2

CONTENTS

UNIT – 1
Overview of Database, Components of database, Functions & advantage of DBMS, Database
Architecture, Database Model, Coddôs Rule, RDBMS Concepts, Database Keys.

UNIT – 2
Normalisation of Database, E-R Diagram, Components of E-R Diagram, Entity, Attribute,
Relationship, Binary Relationship, Recursive Relationship, Generalization, Specialization,
Aggregration.

UNIT – 3
Introduction to SQL, SQL Commands, DDL commands: create, alter, truncate, drop, rename,
DML commands: insert, update, delete, merge,

UNIT – 4
TCL commands: commit, rollback, savepoint, DCL commands: grant, revoke, DQL commands:
select

UNIT – 5
Division Operator in SQL

UNIT – 6
Advance SQL

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 3

UNIT-1
Overview of Database

A Database is a collection of related data organised in a way that data can be easily
accessed, managed and updated. Any piece of information can be a data, for example name
of your school. Database is actualy a place where related piece of information is stored and
various operations can be performed on it.

DBMS
A DBMS is a software that allows creation, definition and manipulation of database. Dbms is
actualy a tool used to perform any kind of operation on data in database. Dbms also provides
protection and security to database. It maintains data consistency in case of multiple users.
Here are some examples of popular dbms, MySql, Oracle, Sybase, Microsoft Access and IBM
DB2 etc.

Components of Database System
The database system can be divided into four components.

¶ Users : Users may be of various type such as DB administrator, System developer and

End users.
¶ Database application : Database application may be Personal, Departmental, Enterprise

and Internal
¶ DBMS : Software that allow users to define, create and manages database access, Ex:

MySql, Oracle etc.
¶ Database : Collection of logical data.

Functions of DBMS
¶ Provides data Independence
¶ Concurrency Control
¶ Provides Recovery services
¶ Provides Utility services
¶ Provides a clear and logical view of the process that manipulates data.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 4

Advantages of DBMS
¶ Segregation of application program.
¶ Minimal data delicacy.
¶ Easy retrieval of data.
¶ Reduced development time and maintenance need.

Disadvantages of DBMS
¶ Complexity
¶ Costly
¶ Large in size

Database Architecture
Database architecture is logically divided into two types.
1. Logical two-tier Client / Server architecture
2. Logical three-tier Client / Server architecture

Two-tier Client / Server Architecture

Two-tier Client / Server architecture is used for User Interface program and Application
Programs that runs on client side. An interface called ODBC(Open Database Connectivity)
provides an API that allow client side program to call the dbms. Most DBMS vendors provide
ODBC drivers. A client program may connect to several DBMS's. In this architecture some
variation of client is also possible for example in some DBMS's more functionality is
transferred to the client including data dictionary, optimization etc. Such clients are called Data
server.

Three-tier Client / Server Architecture

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 5

Three-tier Client / Server database architecture is commonly used architecture for web
applications. Intermediate layer called Application server or Web Server stores the web
connectivty software and the business logic(constraints) part of application used to access the
right amount of data from the database server. This layer acts like medium for sending partially
processed data between the database server and the client.

Database Model
A Database model defines the logical design of data. The model describes the relationships
between different parts of the data. Historically, in database design, three models are
commonly used. They are,
¶ Hierarchical Model
¶ Network Model
¶ Relational Model

Hierarchical Model
In this model each entity has only one parent but can have several children . At the top of
hierarchy there is only one entity which is called Root.

Network Model
In the network model, entities are organised in a graph,in which some entities can be
accessed through several path

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 6

Relational Model
In this model, data is organised in two-dimesional tables called relations. The tables or
relation are related to each other.

Codd's Rule
E.F Codd was a Computer Scientist who invented Relational model for Database
management. Based on relational model, Relation database was created. Codd proposed 13
rules popularly known as Codd's 12 rules to test DBMS's concept against his relational
model. Codd's rule actualy define what quality a DBMS requires in order to become a
Relational Database Management System(RDBMS). Till now, there is hardly any commercial
product that follows all the 13 Codd's rules. Even Oracle follows only eight and half out(8.5) of
13. The Codd's 12 rules are as follows.

Rule zero
This rule states that for a system to qualify as an RDBMS, it must be able to manage database
entirely through the relational capabilities.

Rule 1 : Information rule
All information(including metadata) is to be represented as stored data in cells of tables. The
rows and columns have to be strictly unordered.

Rule 2 : Guaranted Access
Each unique piece of data(atomic value) should be accesible by : Table Name + primary
key(Row) + Attribute(column).
NOTE : Ability to directly access via POINTER is a violation of this rule.

Rule 3 : Systemetic treatment of NULL
Null has several meanings, it can mean missing data, not applicable or no value. It should be
handled consistently. Primary key must not be null. Expression on NULL must give null.

Rule 4 : Active Online Catalog

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 7

Database dictionary(catalog) must have description of Database. Catalog to be governed by
same rule as rest of the database. The same query language to be used on catalog as on
application database.

Rule 5 : Powerful language
One well defined language must be there to provide all manners of access to data.
Example: SQL. If a file supporting table can be accessed by any manner except SQL
interface, then its a violation to this rule.

Rule 6 : View Updation rule
All view that are theoretically updatable should be updatable by the system.

Rule 7 : Relational Level Operation
There must be Insert, Delete, Update operations at each level of relations. Set operation like
Union, Intersection and minus should also be supported.

Rule 8 : Physical Data Independence
The physical storage of data should not matter to the system. If say, some file supporting table
were renamed or moved from one disk to another, it should not effect the application.

Rule 9 : Logical Data Independence
If there is change in the logical structure(table structures) of the database the user view of data
should not change. Say, if a table is split into two tables, a new view should give result as the
join of the two tables. This rule is most difficult to satisfy.

Rule 10 : Integrity Independence
The database should be able to conforce its own integrity rather than using other programs.
Key and Check constraints, trigger etc should be stored in Data Dictionary. This also
make RDBMSindependent of front-end.

Rule 11 : Distribution Independence
A database should work properly regardless of its distribution across a network. This lays
foundation of distributed database.

Rule 12 : Nonsubversion rule
If low level access is allowed to a system it should not be able to subvert or bypass integrity
rule to change data. This can be achieved by some sort of looking or encryption.

RDBMS Concepts
A Relational Database management System(RDBMS) is a database management system
based on relational model introduced by E.F Code. In relational model, data is represented in
terms of tuples(rows).
RDBMS is used to manage Relational database. Relational database is a collection of
organized set of tables from which data can be accessed easily. Relational Database is most
commonly used database. It consists of number of tables and each table has its own primary
key.

What is Table ?
In Relational database, a table is a collection of data elements organised in terms of rows and
columns. A table is also considered as convenient representation of relations. But a table can

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 8

have duplicate tuples while a true relation cannot have duplicate tuples. Table is the most
simplest form of data storage. Below is an example of Employee table.

ID Name Age Salary

1 Adam 34 13000

2 Alex 28 15000

3 Stuart 20 18000

4 Ross 42 19020

What is a Record ?
A single entry in a table is called a Record or Row. A Record in a table represents set of
related data. For example, the above Employee table has 4 records. Following is an example
of single record.

1 Adam 34 13000

What is Field ?
A table consists of several records(row), each record can be broken into several smaller
entities known as Fields. The above Employee table consist of four
fields, ID, Name, Age and Salary.

What is a Column ?
In Relational table, a column is a set of value of a particular type. The term Attribute is also
used to represent a column. For example, in Employee table, Name is a column that represent
names of employee.

Name

Adam

Alex

Stuart

Ross

Database Keys
Keys are very important part of Relational database. They are used to establish and identify
relation between tables. They also ensure that each record within a table can be uniquely
identified by combination of one or more fields within a table.

Super Key
Super Key is defined as a set of attributes within a table that uniquely identifies each record
within a table. Super Key is a superset of Candidate key.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 9

Candidate Key
Candidate keys are defined as the set of fields from which primary key can be selected. It is an
attribute or set of attribute that can act as a primary key for a table to uniquely identify each
record in that table.

Primary Key
Primary key is a candidate key that is most appropriate to become main key of the table. It is a
key that uniquely identify each record in a table.

Composite Key
Key that consist of two or more attributes that uniquely identify an entity occurance is
called Composite key. But any attribute that makes up the Composite key is not a simple
key in its own.

Secondary or Alternative key
The candidate key which are not selected for primary key are known as secondary keys or
alternative keys

Non-key Attribute
Non-key attributes are attributes other than candidate key attributes in a table.

Non-prime Attribute
Non-prime Attributes are attributes other than Primary attribute.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 10

UNIT-2

Normalization of Database
Database Normalisation is a technique of organizing the data in the database. Normalization is
a systematic approach of decomposing tables to eliminate data redundancy and undesirable
characteristics like Insertion, Update and Deletion Anamolies. It is a multi-step process that
puts data into tabular form by removing duplicated data from the relation tables.
Normalization is used for mainly two purpose,

¶ Eliminating reduntant(useless) data.
¶ Ensuring data dependencies make sense i.e data is logically stored.
¶

Problem Without Normalization
Without Normalization, it becomes difficult to handle and update the database, without facing
data loss. Insertion, Updation and Deletion Anamolies are very frequent if Database is not
Normalized. To understand these anomalies let us take an example of Student table.

S_id S_Name S_Address Subject_opted

401 Adam Noida Bio

402 Alex Panipat Maths

403 Stuart Jammu Maths

404 Adam Noida Physics

¶ Updation Anomaly : To update address of a student who occurs twice or more than twice

in a table, we will have to update S_Address column in all the rows, else data will become
inconsistent.

¶ Insertion Anomaly : Suppose for a new admission, we have a Student id(S_id), name
and address of a student but if student has not opted for any subjects yet then we have to
insert NULLthere, leading to Insertion Anomaly.

¶ Deletion Anomaly : If (S_id) 401 has only one subject and temporarily he drops it, when
we delete that row, entire student record will be deleted along with it.

Normalization Rule
Normalization rule are divided into following normal form.
1. First Normal Form
2. Second Normal Form
3. Third Normal Form
4. BCNF

First Normal Form (1NF)
As per First Normal Form, no two Rows of data must contain repeating group of information i.e
each set of column must have a unique value, such that multiple columns cannot be used to
fetch the same row. Each table should be organized into rows, and each row should have a
primary key that distinguishes it as unique.
The Primary key is usually a single column, but sometimes more than one column can be
combined to create a single primary key. For example consider a table which is not in First
normal form.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 11

Student Table :

Student Age Subject

Adam 15 Biology, Maths

Alex 14 Maths

Stuart 17 Maths

In First Normal Form, any row must not have a column in which more than one value is saved,
like separated with commas. Rather than that, we must separate such data into multiple rows.

Student Table following 1NF will be :

Student Age Subject

Adam 15 Biology

Adam 15 Maths

Alex 14 Maths

Stuart 17 Maths

Using the First Normal Form, data redundancy increases, as there will be many columns with
same data in multiple rows but each row as a whole will be unique.

Second Normal Form (2NF)
As per the Second Normal Form there must not be any partial dependency of any column on
primary key. It means that for a table that has concatenated primary key, each column in the
table that is not part of the primary key must depend upon the entire concatenated key for its
existence. If any column depends only on one part of the concatenated key, then the table
fails Second normal form.

In example of First Normal Form there are two rows for Adam, to include multiple subjects that
he has opted for. While this is searchable, and follows First normal form, it is an inefficient use
of space. Also in the above Table in First Normal Form, while the candidate key is
{Student, Subject}, Age of Student only depends on Student column, which is incorrect as
per Second Normal Form. To achieve second normal form, it would be helpful to split out the
subjects into an independent table, and match them up using the student names as foreign
keys.

New Student Table following 2NF will be :

Student Age

Adam 15

Alex 14

Stuart 17

In Student Table the candidate key will be Student column, because all other column
i.e Age is dependent on it.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 12

New Subject Table introduced for 2NF will be :

Student Subject

Adam Biology

Adam Maths

Alex Maths

Stuart Maths

In Subject Table the candidate key will be {Student, Subject} column. Now, both the above
tables qualifies for Second Normal Form and will never suffer from Update Anomalies.
Although there are a few complex cases in which table in Second Normal Form suffers Update
Anomalies, and to handle those scenarios Third Normal Form is there.

Third Normal Form (3NF)
Third Normal form applies that every non-prime attribute of table must be dependent on
primary key, or we can say that, there should not be the case that a non-prime attribute is
determined by another non-prime attribute. So this transitive functional dependency should be
removed from the table and also the table must be in Second Normal form. For example,
consider a table with following fields.

Student_Detail Table :

Student_id Student_name DOB Street city State Zip

In this table Student_id is Primary key, but street, city and state depends upon Zip. The
dependency between zip and other fields is called transitive dependency. Hence to
apply 3NF, we need to move the street, city and state to new table, with Zip as primary key.

New Student_Detail Table :

Student_id Student_name DOB Zip

Address Table :

Zip Street city state

The advantage of removing transtive dependency is,
¶ Amount of data duplication is reduced.
¶ Data integrity achieved.

Boyce and Codd Normal Form (BCNF)
Boyce and Codd Normal Form is a higher version of the Third Normal form. This form deals
with certain type of anomaly that is not handled by 3NF. A 3NF table which does not have
multiple overlapping candidate keys is said to be in BCNF. For a table to be in BCNF, following
conditions must be satisfied:
¶ R must be in 3rd Normal Form
¶ and, for each functional dependency (X Ÿ Y), X should be a super Key.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 13

E-R Diagram

ER-Diagram is a visual representation of data that describes how data is related to each other.

Symbols and Notations

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 14

Components of E-R Diagram
The E-R diagram has three main components.

1) Entity

An Entity can be any object, place, person or class. In E-R Diagram, an entity is represented
using rectangles. Consider an example of an Organisation. Employee, Manager, Department,
Product and many more can be taken as entities from Organisation.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 15

Weak Entity
Weak entity is an entity that depends on another entity. Weak entity doen't have key attribute
of their own. Double rectangle represents weak entity.

2) Attribute
An Attribute describes a property or characterstic of an entity. For example, Name, Age,
Address etc can be attributes of a Student. An attribute is represented using eclipse.

Key Attribute
Key attribute represents the main characterstic of an Entity. It is used to represent Primary
key. Ellipse with underlying lines represent Key Attribute.

Composite Attribute
An attribute can also have their own attributes. These attributes are known
as Composite attribute.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 16

3) Relationship

A Relationship describes relations between entities. Relationship is represented using
diamonds.

There are three types of relationship that exist between Entities.
¶ Binary Relationship
¶ Recursive Relationship
¶ Ternary Relationship

Binary Relationship

Binary Relationship means relation between two Entities. This is further divided into three
types.
1. One to One : This type of relationship is rarely seen in real world.

The above example describes that one student can enroll only for one course and a course
will also have only one Student. This is not what you will usually see in relationship.

2. One to Many : It reflects business rule that one entity is associated with many number of
same entity. The example for this relation might sound a little weird, but this menas that
one student can enroll to many courses, but one course will have one Student.

The arrows in the diagram describes that one student can enroll for only one course.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 17

3. Many to One : It reflects business rule that many entities can be associated with just one
entity. For example, Student enrolls for only one Course but a Course can have many
Students.

4. Many to Many :

The above diagram represents that many students can enroll for more than one courses.

Recursive Relationship
When an Entity is related with itself it is known as Recursive Relationship.

Ternary Relationship

Relationship of degree three is called Ternary relationship.

Generalization

Generalization is a bottom-up approach in which two lower level entities combine to form a
higher level entity. In generalization, the higher level entity can also combine with other lower
level entity to make further higher level entity.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 18

Specialization

Specialization is opposite to Generalization. It is a top-down approach in which one higher
level entity can be broken down into two lower level entity. In specialization, some higher level
entities may not have lower-level entity sets at all.

Aggregration
Aggregration is a process when relation between two entity is treated as a single entity. Here
the relation between Center and Course, is acting as an Entity in relation with Visitor.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 19

UNIT - 3
Introduction to SQL

Structure Query Language(SQL) is a programming language used for storing and managing
data in RDBMS. SQL was the first commercial language introduced for E.F
Codd's Relational model. Today almost all RDBMS(MySql, Oracle, Infomix, Sybase, MS
Access) uses SQL as the standard database language. SQL is used to perform all type of data
operations in RDBMS.

SQL Command
SQL defines following data languages to manipulate data of RDBMS.

DDL : Data Definition Language
All DDL commands are auto-committed. That means it saves all the changes permanently in
the database.

Command Description

create to create new table or database

alter for alteration

truncate delete data from table

drop to drop a table

rename to rename a table

DML : Data Manipulation Language
DML commands are not auto-committed. It means changes are not permanent to database,
they can be rolled back.

Command Description

insert to insert a new row

update to update existing row

delete to delete a row

merge merging two rows or two tables

TCL : Transaction Control Language
These commands are to keep a check on other commands and their affect on the database.
These commands can annul changes made by other commands by rolling back to original
state. It can also make changes permanent.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 20

Command Description

commit to permanently save

rollback to undo change

savepoint to save temporarily

DCL : Data Control Language
Data control language provides command to grant and take back authority.

Command Description

grant grant permission of right

revoke take back permission.

DQL : Data Query Language

Command Description

select retrieve records from one or more table

create command
create is a DDL command used to create a table or a database.

Creating a Database
To create a database in RDBMS, create command is uses. Following is the Syntax,
create database database - name;

Example for Creating Database
create database Test;

The above command will create a database named Test.

Creating a Table
create command is also used to create a table. We can specify names and datatypes of
various columns along.Following is the Syntax,

create table table - name
{
 column- name1 datatype1,
 column- name2 datatype2,
 column- name3 datatype3,
 column- name4 datatype4
};

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 21

create table command will tell the database system to create a new table with given table
name and column information.

Example for creating Table
create table Student(id int, name varchar, age int);

The above command will create a new table Student in database system with 3 columns,
namely id, name and age.

alter command
alter command is used for alteration of table structures. There are various uses
of alter command, such as,
¶ to add a column to existing table
¶ to rename any existing column
¶ to change datatype of any column or to modify its size.
¶ alter is also used to drop a column.

To Add Column to existing Table

Using alter command we can add a column to an existing table. Following is the Syntax,

alter table table - name add(column - name datatype);

Here is an Example for this,

alter table Student add(address char);

The above command will add a new column address to the Student table

To Add Multiple Column to existing Table

Using alter command we can even add multiple columns to an existing table. Following is the
Syntax,

alter table table - name add(column - name1 datatype1, column - name2 datatype2, column - name3
datatype3);

Here is an Example for this,

alter table Student add(father - name varchar(60), mother - name varchar(60), dob date);

The above command will add three new columns to the Student table

To Add column with Default Value

alter command can add a new column to an existing table with default values. Following is the
Syntax,

alter table table - name add(column - name1 datatype1 default data);

Here is an Example for this,

alter table Student add(dob date default '1 - Jan- 99');

The above command will add a new column with default value to the Student table

To Modify an existing Column

alter command is used to modify data type of an existing column . Following is the Syntax,

alter table table - name modify(column - name datatype);

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 22

Here is an Example for this,

alter table Student modify(address varchar(30));

The above command will modify address column of the Student table

To Rename a column

Using alter command you can rename an existing column. Following is the Syntax,

alter table table - name rename old - column- name to column - name;

Here is an Example for this,

alter table Student rename address to Location;

The above command will rename address column to Location.

To Drop a Column

alter command is also used to drop columns also. Following is the Syntax,

alter table table - name drop(column - name);

Here is an Example for this,

alter table Student drop(address);

The above command will drop address column from the Student table

SQL queries to Truncate, Drop or Rename a Table
truncate command

truncate command removes all records from a table. But this command will not destroy the
table's structure. When we apply truncate command on a table its Primary key is initialized.
Following is its Syntax,

truncate table table - name

Here is an Example explaining it.

truncate table Student;

The above query will delete all the records of Student table.

truncate command is different from delete command. delete command will delete all the rows
from a table whereas truncate command re-initializes a table(like a newly created table).

For eg. If you have a table with 10 rows and an auto_increment primary key, if you
use deletecommand to delete all the rows, it will delete all the rows, but will not initialize the
primary key, hence if you will insert any row after using delete command, the auto_increment
primary key will start from 11. But in case of truncate command, primary key is re-initialized.

drop command

drop query completely removes a table from database. This command will also destroy the
table structure. Following is its Syntax,

drop table table - name

Here is an Example explaining it.

drop table Student;

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 23

The above query will delete the Student table completely. It can also be used on Databases.
For Example, to drop a database,

 drop database Test;

The above query will drop a database named Test from the system.

rename query

rename command is used to rename a table. Following is its Syntax,

rename table old - table - name to new - table - name

Here is an Example explaining it.

rename table Student to Student - record;

The above query will rename Student table to Student-record.

DML command
Data Manipulation Language (DML) statements are used for managing data in database. DML
commands are not auto-committed. It means changes made by DML command are not
permanent to database, it can be rolled back.

1) INSERT command

Insert command is used to insert data into a table. Following is its general syntax,

INSERT into table - name values(data1,data2,..)

Lets see an example,

Consider a table Student with following fields.

S_id S_Name age

INSERT into Student values(101,'Adam',15);

The above command will insert a record into Student table.

S_id S_Name age

101 Adam 15

Example to Insert NULL value to a column

Both the statements below will insert NULL value into age column of the Student table.

INSERT into Student(id,name) values(102,'Alex');

Or,

INSERT into Student values(102,'Alex',null);

The above command will insert only two column value other column is set to null.

S_id S_Name age

101 Adam 15

102 Alex

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 24

Example to Insert Default value to a column
INSERT into Student values(103,'Chris',default)

S_id S_Name age

101 Adam 15

102 Alex

103 chris 14

Suppose the age column of student table has default value of 14.
Also, if you run the below query, it will insert default value into the age column, whatever the
default value may be.
INSERT into Student values(103,'Chris')

2) UPDATE command

Update command is used to update a row of a table. Following is its general syntax,

UPDATE table- name set column - name = value where condition;

Lets see an example,

update Student set age=18 where s_id=102;

S_id S_Name age

101 Adam 15

102 Alex 18

103 chris 14

Example to Update multiple columns

UPDATE Student set s_name='Abhi',age=17 where s_id=103;

The above command will update two columns of a record.

S_id S_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 25

3) Delete command

Delete command is used to delete data from a table. Delete command can also be used with
condition to delete a particular row. Following is its general syntax,

DELETE from table - name;

Example to Delete all Records from a Table

DELETE from Student;

The above command will delete all the records from Student table.

Example to Delete a particular Record from a Table
Consider the following Student table

S_id S_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

DELETE from Student where s_id=103;

The above command will delete the record where s_id is 103 from Student table.

S_id S_Name age

101 Adam 15

102 Alex 18

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 26

UNIT - 4
TCL command
Transaction Control Language (TCL) commands are used to manage transactions in
database.These are used to manage the changes made by DML statements. It also allows
statements to be grouped together into logical transactions.

Commit command

Commit command is used to permanently save any transaaction into database.

Following is Commit command's syntax,

commit;

Rollback command

This command restores the database to last commited state. It is also use with savepoint
command to jump to a savepoint in a transaction.

Following is Rollback command's syntax,

rollback to savepoint - name;

Savepoint command

savepoint command is used to temporarily save a transaction so that you can rollback to that
point whenever necessary.

Following is savepoint command's syntax,

savepoint savepoint - name;

Example of Savepoint and Rollback
Following is the class table,

ID NAME

1 abhi

2 adam

4 alex

Lets use some SQL queries on the above table and see the results.

INSERT into class values(5,'Rahul');
commit;
UPDATE class set name='abhijit' where id='5';
savepoint A;
INSERT into class values(6,'Chris');
savepoint B;
INSERT into class values(7,'Bravo');
savepoint C;
SELECT * from class;

The resultant table will look like,

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 27

ID NAME

1 abhi

2 adam

4 alex

5 abhijit

6 chris

7 bravo

Now rollback to savepoint B

rollback to B;

SELECT * from class;

The resultant table will look like

ID NAME

1 abhi

2 adam

4 alex

5 abhijit

6 chris

Now rollback to savepoint A

rollback to A;

SELECT * from class;

The result table will look like

ID NAME

1 abhi

2 adam

4 alex

5 abhijit

DCL command
Data Control Language(DCL) is used to control privilege in Database. To perform any
operation in the database, such as for creating tables, sequences or views we need privileges.
Privileges are of two types,

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 28

¶ System : creating session, table etc are all types of system privilege.

¶ Object : any command or query to work on tables comes under object privilege.

DCL defines two commands,

¶ Grant : Gives user access privileges to database.

¶ Revoke : Take back permissions from user.

To Allow a User to create Session

grant create session to username;

To Allow a User to create Table

grant create table to username;

To provide User with some Space on Tablespace to store Table

alter user username quota unlimited on system;

To Grant all privilege to a User

grant sysdba to username

To Grant permission to Create any Table

grant create any table to username

To Grant permission to Drop any Table

grant drop any table to username

To take back Permissions

revoke create table from username

WHERE clause
Where clause is used to specify condition while retriving data from table. Where clause is used
mostly with Select, Update and Delete query. If condititon specified by where clause is true
then only the result from table is returned.

Syntax for WHERE clause
SELECT column- name1,
 column- name2,
 column- name3,
 column- nameN
from table - name WHERE [condition];

Example using WHERE clause
Consider a Student table,

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 29

s_id s_Name age address

101 Adam 15 Noida

102 Alex 18 Delhi

103 Abhi 17 Rohtak

104 Ankit 22 Panipat

Now we will use a SELECT statement to display data of the table, based on a condition, which
we will add to the SELECT query using WHERE clause.

SELECT s_id,
 s_name,
 age,
 address
from Student WHERE s_id=101;

s_id s_Name age address

101 Adam 15 Noida

SELECT Query
Select query is used to retrieve data from a tables. It is the most used SQL query. We can
retrieve complete tables, or partial by mentioning conditions using WHERE clause.

Syntax of SELECT Query
SELECT column- name1, column - name2, column - name3, column - nameN from table - name;

Example for SELECT Query
Conside the following Student table,

S_id S_Name age address

101 Adam 15 Noida

102 Alex 18 Delhi

103 Abhi 17 Rohtak

104 Ankit 22 Panipat

SELECT s_id, s_name, age from Student.

The above query will fetch information of s_id, s_name and age column from Student table

S_id S_Name age

101 Adam 15

102 Alex 18

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 30

103 Abhi 17

104 Ankit 22

Example to Select all Records from Table

A special character asterisk * is used to address all the data(belonging to all columns) in a
query. SELECT statement uses * character to retrieve all records from a table.

SELECT * from student;

The above query will show all the records of Student table, that means it will show complete
Student table as result.

S_id S_Name age address

101 Adam 15 Noida

102 Alex 18 Delhi

103 Abhi 17 Rohtak

104 Ankit 22 Panipat

Example to Select particular Record based on Condition

SELECT * from Student WHERE s_name = 'Abhi';

103 Abhi 17 Rohtak

Example to Perform Simple Calculations using Select Query
Conside the following Employee table.

eid Name age salary

101 Adam 26 5000

102 Ricky 42 8000

103 Abhi 22 10000

104 Rohan 35 5000

SELECT eid, name, salary+3000 from Employee;

The above command will display a new column in the result, showing 3000 added into existing
salaries of the employees.

eid Name salary+3000

101 Adam 8000

102 Ricky 11000

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 31

103 Abhi 13000

104 Rohan 8000

Like clause
Like clause is used as condition in SQL query. Like clause compares data with an expression
using wildcard operators. It is used to find similar data from the table.

Wildcard operators
There are two wildcard operators that are used in like clause.
¶ Percent sign % : represents zero, one or more than one character.
¶ Underscore sign _ : represents only one character.

Example of LIKE clause
Consider the following Student table.

s_id s_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

SELECT * from Student where s_name like 'A%';

The above query will return all records where s_name starts with character 'A'.

s_id s_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

Example

SELECT * from Student where s_name like '_d%';

The above query will return all records from Student table where s_name contain 'd' as
second character.

s_id s_Name age

101 Adam 15

Example

SELECT * from Student where s_name like '%x';

The above query will return all records from Student table where s_name contain 'x' as last
character.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 32

s_id s_Name age

102 Alex 18

Order By Clause
Order by clause is used with Select statement for arranging retrieved data in sorted order.
The Order by clause by default sort data in ascending order. To sort data in descending
order DESC keyword is used with Order by clause.

Syntax of Order By
SELECT column- list|* from table - name order by asc|desc;

Example using Order by
Consider the following Emp table,

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SELECT * from Emp order by salary;

The above query will return result in ascending order of the salary.

eid name age salary

403 Rohan 34 6000

402 Shane 29 8000

405 Tiger 35 8000

401 Anu 22 9000

404 Scott 44 10000

Example of Order by DESC

Consider the Emp table described above,

SELECT * from Emp order by salary DESC;

The above query will return result in descending order of the salary.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 33

eid name age salary

404 Scott 44 10000

401 Anu 22 9000

405 Tiger 35 8000

402 Shane 29 8000

403 Rohan 34 6000

Group By Clause
Group by clause is used to group the results of a SELECT query based on one or more
columns. It is also used with SQL functions to group the result from one or more tables.

Syntax for using Group by in a statement.

SELECT column_name, function(column_name)
FROM table_name
WHERE condition
GROUP BY column_name

Example of Group by in a Statement
Consider the following Emp table.

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 9000

405 Tiger 35 8000

Here we want to find name and age of employees grouped by their salaries

SQL query for the above requirement will be,

SELECT name, age
from Emp group by salary

Result will be,

name age

Rohan 34

shane 29

anu 22

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 34

Example of Group by in a Statement with WHERE clause
Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 9000

405 Tiger 35 8000

SQL query will be,
select name, salary
from Emp
where age > 25
group by salary

Result will be.

name salary

Rohan 6000

Shane 8000

Scott 9000

You must remember that Group By clause will always come at the end, just like the Order by
clause.

HAVING Clause
having clause is used with SQL Queries to give more precise condition for a statement. It is
used to mention condition in Group based SQL functions, just like WHERE clause.
Syntax for having will be,

select column_name, function(column_name)
FROM table_name
WHERE column_name condition
GROUP BY column_name
HAVING function(column_name) condition

Example of HAVING Statement
Consider the following Sale table.

oid order_name previous_balance customer

11 ord1 2000 Alex

12 ord2 1000 Adam

13 ord3 2000 Abhi

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 35

14 ord4 1000 Adam

15 ord5 2000 Alex

Suppose we want to find the customer whose previous_balance sum is more than 3000.
We will use the below SQL query,

SELECT *
from sale group customer
having sum(previous_balance) > 3000

Result will be,

oid order_name previous_balance customer

11 ord1 2000 Alex

Distinct keyword
The distinct keyword is used with Select statement to retrieve unique values from the
table. Distinctremoves all the duplicate records while retrieving from database.

Syntax for DISTINCT Keyword
SELECT distinct column - name from table - name;

Example
Consider the following Emp table.

eid name age salary

401 Anu 22 5000

402 Shane 29 8000

403 Rohan 34 10000

404 Scott 44 10000

405 Tiger 35 8000

select distinct salary from Emp;

The above query will return only the unique salary from Emp table

salary

5000

8000

10000

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 36

AND & OR operator
AND and OR operators are used with Where clause to make more precise conditions for
fetching data from database by combining more than one condition together.

AND operator
AND operator is used to set multiple conditions with Where clause.

Example of AND
Consider the following Emp table

eid name age salary

401 Anu 22 5000

402 Shane 29 8000

403 Rohan 34 12000

404 Scott 44 10000

405 Tiger 35 9000

SELECT * from Emp WHERE salary < 10000 AND age > 25

The above query will return records where salary is less than 10000 and age greater than 25.

eid name age salary

402 Shane 29 8000

405 Tiger 35 9000

OR operator
OR operator is also used to combine multiple conditions with Where clause. The only
difference between AND and OR is their behaviour. When we use AND to combine two or
more than two conditions, records satisfying all the condition will be in the result. But in case of
OR, atleast one condition from the conditions specified must be satisfied by any record to be in
the result.

Example of OR
Consider the following Emp table

eid name age salary

401 Anu 22 5000

402 Shane 29 8000

403 Rohan 34 12000

404 Scott 44 10000

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 37

405 Tiger 35 9000

SELECT * from Emp WHERE salary > 10000 OR age > 25

The above query will return records where either salary is greater than 10000 or age greater
than 25.

402 Shane 29 8000

403 Rohan 34 12000

404 Scott 44 10000

405 Tiger 35 9000

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 38

UNIT 5
Division Operator in SQL

The division operator is used when we have to evaluate queries which contain the
keyword 'all' .

Some instances where division operator is used are:

1. Which person has account in all the banks of a particular city?

2. Which students have taken all the courses required to graduate?

In all these queries, the description after the keyword 'all' defines a set which contains some
elements and the final result contains those units who satisfy these requirements. Another way
how you can identify the usage of division operator is this logical implication of if...then. In
context of the above two examples, we can see that the queries mean that

1. If there is a bank in that particular city, that person must have an account in that bank.

2. If there is a course in the list of courses required to be graduated, that person must have
taken that course.

We shall see the last example in detail.

Table 1: Course_Taken - It consists of the names of Students against the courses that they
have taken.

Table 2: Course_Required - It consists of the courses that one is required to take in order to
graduate.

Query: Find all the students who can graduate (i.e. who have taken all the subjects required
for one to graduate)

Unfortunately, there is no direct way in which we can express the division operator. Let's walk
through step by step how to write the query for the division operator.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 39

1. Find all the students

Create a set of all students that have taken courses. This can be done easily by the
following command.

Create table AllStudents as SELECT DISTINCT Student_Name FROM Course_Taken

This gives the following table AllStudents:

2. Find all students and the courses required to graduate

Next, we will create a set of students and the courses they need to graduate. We can
express this in the form of Cartesian Product of AllStudents and Course_Required by the
following command.

CREATE table StudentsAndRequired AS SELECT AllStudents.Student_Name,
Course_Required.Course
FROM AllStudents, Course_Required

The table StudentsAndRequired is as follows:

3. Find all students and the required courses they have not taken
Here, we are taking our first step for finding the students who cannot graduate. The idea is
to simply find the students who have not taken certain courses they require to graduate
and hence they cannot graduate. This is simply all those tuples which are present
in StudentsAndRequiredand not present in Course_Taken.

CREATE table StudentsAndNotTaken AS SELECT * FROM StudentsAndRequired WHERE NOT
EXISTS (Select * from Course_Taken WHERE StudentsAndRequired.Student_Name =
Course_Taken.Student_Name
AND StudentsAndRequired.Course = Course_Taken.Course)

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 40

The table StudentsAndNotTaken comes out to be:

4. Find all students who cannot graduate
All the students who are present in the table StudentsAndNotTaken are the ones who
cannot graduate. Therefore, we can find the students who cannot graduate as

CREATE table CannotGraduate AS SELECT DISTINCT Student_Name FROM StudentsAndNotTaken

5. Find all students who can graduate
The students who can graduate are simply those who are present in AllStudents but not
in CannotGraduate. This can be done by the following query:

CREATE Table CanGraduate AS SELECT * FROM AllStudents WHERE NOT
EXISTS (SELECT * FROM CannotGraduate WHERE CannotGraduate.Student_name =
AllStudents.Student_name)

The results are as follows:

Hence we see how these steps can lead us to the final answer. Now let us see how to write all
these 5 steps in one single query which does not create so many tables.

SELECT DISTINCT x.Student_Name FROM Course_Taken AS x WHERE NOT
EXISTS(SELECT * FROM Course_Required AS y WHERE NOT
EXISTS(SELECT * FROM Course_Taken AS z WHERE z.Student_name = x.Student_name AND
z.Course = y.Course))

This gives us the same result as those 5 steps above.
Note: There are two more ways to write queries for the division operator. This is just one of
the many ways.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 41

UNIT - 6
ADVANCE SQL

SQL Constraints
SQL Constraints are rules used to limit the type of data that can go into a table, to maintain the
accuracy and integrity of the data inside table.
Constraints can be divided into following two types,
¶ Column level constraints : limits only column data
¶ Table level constraints : limits whole table data
Constraints are used to make sure that the integrity of data is maintained in the database.
Following are the most used constraints that can be applied to a table.
¶ NOT NULL
¶ UNIQUE
¶ PRIMARY KEY
¶ FOREIGN KEY
¶ CHECK
¶ DEFAULT

NOT NULL Constraint
NOT NULL constraint restricts a column from having a NULL value. Once NOT
NULL constraint is applied to a column, you cannot pass a null value to that column. It
enforces a column to contain a proper value. One important point to note about NOT NULL
constraint is that it cannot be defined at table level.

Example using NOT NULL constraint
CREATE table Student(s_id int NOT NULL, Name varchar(60), Age int);

The above query will declare that the s_id field of Student table will not take NULL value.

UNIQUE Constraint
UNIQUE constraint ensures that a field or column will only have unique values. A UNIQUE
constraint field will not have duplicate data. UNIQUE constraint can be applied at column level
or table level.

Example using UNIQUE constraint when creating a Table (Table Level)
CREATE table Student(s_id int NOT NULL UNIQUE, Name varchar(60), Age int);

The above query will declare that the s_id field of Student table will only have unique values
and wont take NULL value.

Example using UNIQUE constraint after Table is created (Column Level)
ALTER table Student add UNIQUE(s_id);

The above query specifies that s_id field of Student table will only have unique value.

Primary Key Constraint
Primary key constraint uniquely identifies each record in a database. A Primary Key must
contain unique value and it must not contain null value. Usually Primary Key is used to index
the data inside the table.

Example using PRIMARY KEY constraint at Table Level
CREATE table Student (s_id int PRIMARY KEY, Name varchar(60) NOT NULL, Age int);

The above command will creates a PRIMARY KEY on the s_id .

Example using PRIMARY KEY constraint at Column Level

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 42

ALTER table Student add PRIMARY KEY (s_id);

The above command will creates a PRIMARY KEY on the s_id .

Foreign Key Constraint
FOREIGN KEY is used to relate two tables. FOREIGN KEY constraint is also used to restrict
actions that would destroy links between tables. To understand FOREIGN KEY, let's see it
using two table.
Customer_Detail Table :

c_id Customer_Name address

101 Adam Noida

102 Alex Delhi

103 Stuart Rohtak

Order_Detail Table :

Order_id Order_Name c_id

10 Order1 101

11 Order2 103

12 Order3 102

In Customer_Detail table, c_id is the primary key which is set as foreign key
in Order_Detail table. The value that is entered in c_id which is set as foreign key
in Order_Detail table must be present in Customer_Detail table where it is set as primary
key. This prevents invalid data to be inserted into c_id column of Order_Detail table.

Example using FOREIGN KEY constraint at Table Level

CREATE table Order_Detail(order_id int PRIMARY KEY,

order_name varchar(60) NOT NULL,

c_id int FOREIGN KEY REFERENCES Customer_Detail(c_id));

In this query, c_id in table Order_Detail is made as foriegn key, which is a reference of c_id
column of Customer_Detail.

Example using FOREIGN KEY constraint at Column Level

ALTER table Order_Detail add FOREIGN KEY (c_id) REFERENCES Customer_Detail(c_id);

Behaviour of Foriegn Key Column on Delete

There are two ways to maintin the integrity of data in Child table, when a particular record is
deleted in main table. When two tables are connected with Foriegn key, and certain data in the
main table is deleted, for which record exit in child table too, then we must have some
mechanism to save the integrity of data in child table.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 43

¶ On Delete Cascade : This will remove the record from child table, if that value of foriegn

key is deleted from the main table.

¶ On Delete Null : This will set all the values in that record of child table as NULL, for which
the value of foriegn key is deleted from the main table.

¶ If we don't use any of the above, then we cannot delete data from the main table for which
data in child table exists. We will get an error if we try to do so.

ERROR : Record in child table exist

CHECK Constraint
CHECK constraint is used to restrict the value of a column between a range. It performs check
on the values, before storing them into the database. Its like condition checking before saving
data into a column.

Example using CHECK constraint at Table Level
create table Student(s_id int NOT NULL CHECK(s_id > 0),
Name varchar(60) NOT NULL,
Age int);

The above query will restrict the s_id value to be greater than zero.

Example using CHECK constraint at Column Level
ALTER table Student add CHECK(s_id > 0);

SQL Functions
SQL provides many built-in functions to perform operations on data. These functions are
useful while performing mathematical calculations, string concatenations, sub-strings etc. SQL
functions are divided into two catagories,
¶ Aggregrate Functions
¶ Scalar Functions

Aggregrate Functions
These functions return a single value after calculating from a group of values.Following are
some frequently used Aggregrate functions.

1) AVG()
Average returns average value after calculating from values in a numeric column.
Its general Syntax is,
SELECT AVG(column_name) from table_name

Example using AVG()
Consider following Emp table

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 44

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find average of salary will be,
SELECT avg(salary) from Emp;

Result of the above query will be,

avg(salary)

8200

2) COUNT()
Count returns the number of rows present in the table either based on some condition or
without condition.
Its general Syntax is,
SELECT COUNT(column_name) from table - name

Example using COUNT()
Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to count employees, satisfying specified condition is,

SELECT COUNT(name) from Emp where salary = 8000;

Result of the above query will be,

count(name)

2

Example of COUNT(distinct)
Consider following Emp table

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 45

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query is,

SELECT COUNT(distinct salary) from emp;

Result of the above query will be,

count(distinct salary)

4

3) FIRST()

First function returns first value of a selected column

Syntax for FIRST function is,

SELECT FIRST(column_name) from table - name

Example of FIRST()
Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query

SELECT FIRST(salary) from Emp;

Result will be,

first(salary)

9000

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 46

4) LAST()

LAST return the return last value from selected column

Syntax of LAST function is,

SELECT LAST(column_name) from table - name

Example of LAST()
Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query will be,

SELECT LAST(salary) from emp;

Result of the above query will be,

last(salary)

8000

5) MAX()

MAX function returns maximum value from selected column of the table.

Syntax of MAX function is,

SELECT MAX(column_name) from table - name

Example of MAX()
Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find Maximum salary is,
SELECT MAX(salary) from emp;

Result of the above query will be,

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 47

MAX(salary)

10000

6) MIN()

MIN function returns minimum value from a selected column of the table.

Syntax for MIN function is,

SELECT MIN(column_name) from table - name

Example of MIN()
Consider following Emp table,

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find minimum salary is,

SELECT MIN(salary) from emp;

Result will be,

MIN(salary)

6000

7) SUM()
SUM function returns total sum of a selected columns numeric values.
Syntax for SUM is,
SELECT SUM(column_name) from table - name

Example of SUM()
Consider following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 48

405 Tiger 35 8000

SQL query to find sum of salaries will be,
SELECT SUM(salary) from emp;

Result of above query is,

SUM(salary)

41000

Scalar Functions
Scalar functions return a single value from an input value. Following are soe frequently used
Scalar Functions.

1) UCASE()
UCASE function is used to convert value of string column to Uppercase character.
Syntax of UCASE,
SELECT UCASE(column_name) from ta ble - name

Example of UCASE()
Consider following Emp table

eid name age salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

SQL query for using UCASE is,
SELECT UCASE(name) from emp;

Result is,

UCASE(name)

ANU

SHANE

ROHAN

SCOTT

TIGER

2) LCASE()
LCASE function is used to convert value of string column to Lowecase character.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 49

Syntax for LCASE is,
SELECT LCASE(column_name) from table - name

Example of LCASE()
Consider following Emp table

eid name age salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

SQL query for converting string value to Lower case is,
SELECT LCASE(name) from emp;

Result will be,

LCASE(name)

anu

shane

rohan

scott

tiger

3) MID()
MID function is used to extract substrings from column values of string type in a table.
Syntax for MID function is,
SELECT MID(column_name, start, length) from table - name

Example of MID()
Consider following Emp table

eid name age salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 50

SQL query will be,
select MID(name,2,2) from emp;

Result will come out to be,

MID(name,2,2)

nu

ha

oh

co

ig

4) ROUND()
ROUND function is used to round a numeric field to number of nearest integer. It is used on
Decimal point values. Syntax of Round function is,
SELECT ROUND(column_name, decimals) from table - name

Example of ROUND()
Consider following Emp table

eid name age salary

401 anu 22 9000.67

402 shane 29 8000.98

403 rohan 34 6000.45

404 scott 44 10000

405 Tiger 35 8000.01

SQL query is,
SELECT ROUND(salary) from emp;

Result will be,

ROUND(salary)

9001

8001

6000

10000

8000

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 51

Join in SQL
SQL Join is used to fetch data from two or more tables, which is joined to appear as single set
of data. SQL Join is used for combining column from two or more tables by using values
common to both tables. Join Keyword is used in SQL queries for joining two or more tables.
Minimum required condition for joining table, is (n-1) where n, is number of tables. A table can
also join to itself known as, Self Join.

Types of Join
The following are the types of JOIN that we can use in SQL.
¶ Inner
¶ Outer
¶ Left
¶ Right

Cross JOIN or Cartesian Product
This type of JOIN returns the cartesian product of rows from the tables in Join. It will return a
table which consists of records which combines each row from the first table with each row of
the second table.
Cross JOIN Syntax is,
SELECT column- name- list
from table - name1
CROSS JOIN
table - name2;

Example of Cross JOIN
The class table,

ID NAME

1 abhi

2 adam

4 alex

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Cross JOIN query will be,
SELECT *
 from class,
 cross JOIN class_info;

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 52

2 adam 1 DELHI

4 alex 1 DELHI

1 abhi 2 MUMBAI

2 adam 2 MUMBAI

4 alex 2 MUMBAI

1 abhi 3 CHENNAI

2 adam 3 CHENNAI

4 alex 3 CHENNAI

INNER Join or EQUI Join
This is a simple JOIN in which the result is based on matched data as per the equality
condition specified in the query.
Inner Join Syntax is,
SELECT column- name- list
from table - name1
INNER JOIN
table - name2
WHERE table- name1.column- name = table - name2.column- name;

Example of Inner JOIN
The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Inner JOIN query will be,
SELECT * from class, class_info where class.id = class_info.id;

The result table will look like,

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 53

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

Natural JOIN
Natural Join is a type of Inner join which is based on column having same name and same
datatype present in both the tables to be joined.
Natural Join Syntax is,
SELECT *
from table - name1
NATURAL JOIN
table - name2;

Example of Natural JOIN
The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Natural join query will be,
SELECT * from class NATURAL JOIN class_info;

The result table will look like,

ID NAME Address

1 abhi DELHI

2 adam MUMBAI

3 alex CHENNAI

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 54

In the above example, both the tables being joined have ID column(same name and same
datatype), hence the records for which value of ID matches in both the tables will be the result
of Natural Join of these two tables.

Outer JOIN
Outer Join is based on both matched and unmatched data. Outer Joins subdivide further into,
¶ Left Outer Join
¶ Right Outer Join
¶ Full Outer Join

Left Outer Join
The left outer join returns a result table with the matched data of two tables then remaining
rows of the left table and null for the right table's column.
Left Outer Join syntax is,
SELECT column- name- list
from table - name1
LEFT OUTER JOIN
table - name2
on table - name1.column- name = table - name2.column- name;

Left outer Join Syntax for Oracle is,
select column - name- list
from table - name1,
table - name2
on table - name1.column- name = table - name2.column- name(+);

Example of Left Outer Join
The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

5 ashish

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Left Outer Join query will be,

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 55

SELECT * FROM class LEFT OUTER JOIN class_info ON (class.id=class_info.id);

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

4 anu null null

5 ashish null null

Right Outer Join
The right outer join returns a result table with the matched data of two tables then remaining
rows of the right table and null for the left table's columns.
Right Outer Join Syntax is,
select column - name- list
from table - name1
RIGHT OUTER JOIN
table - name2
on table - name1.column- name = table - name2.column- name;

Right outer Join Syntax for Oracle is,
select column - name- list
from table - name1,
table - name2
on table - name1.column- name(+) = table - name2.column- name;

Example of Right Outer Join
The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

5 ashish

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 56

7 NOIDA

8 PANIPAT

Right Outer Join query will be,
SELECT * FROM class RIGHT OUTER JOIN class_info on (class.id=class_info.id);

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

null null 7 NOIDA

null null 8 PANIPAT

Full Outer Join
The full outer join returns a result table with the matched data of two table then remaining
rows of both left table and then the right table.
Full Outer Join Syntax is,
select column - name- list
from table - name1
FULL OUTER JOIN
table - name2
on table - name1.column- name = table - name2.column- name;

Example of Full outer join is,
The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

5 ashish

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 57

7 NOIDA

8 PANIPAT

Full Outer Join query will be like,
SELECT * FROM class FULL OUTER JOIN class_info on (class.id=class_info.id);

The result table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

4 anu null null

5 ashish null null

null null 7 NOIDA

null null 8 PANIPAT

SQL Alias
Alias is used to give an alias name to a table or a column. This is quite useful in case of large
or complex queries. Alias is mainly used for giving a short alias name for a column or a table
with complex names.
Syntax of Alias for table names,
SELECT column- name
from table - name
as alias - name

Following is an Example using Alias,
SELECT * from Employee_detail as ed;

Alias syntax for columns will be like,
SELECT
column- name as alias - name
from
table - name

Example using alias for columns,
SELECT customer_id as cid from Emp;

Example of Alias in SQL Query
Consider the following two tables,
The class table,

ID Name

1 abhi

2 adam

3 alex

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 58

4 anu

5 ashish

The class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Below is the Query to fetch data from both the tables using SQL Alias,
SELECT C.id, C.Name, Ci.Address from Class as C, Class_info as Ci where C.id=Ci.id;

Result table look like,

ID Name Address

1 abhi DELHI

2 adam MUMBAI

3 alex CHENNAI

Set Operation in SQL
SQL supports few Set operations to be performed on table data. These are used to get
meaningful results from data, under different special conditions.

Union
UNION is used to combine the results of two or more Select statements. However it will
eliminate duplicate rows from its result set. In case of union, number of columns and datatype
must be same in both the tables.

Example of UNION
The First table,

ID Name

1 abhi

2 adam

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 59

The Second table,

ID Name

2 adam

3 Chester

Union SQL query will be,
select * from First
UNION
select * from second

The result table will look like,

ID NAME

1 abhi

2 adam

3 Chester

Union All
This operation is similar to Union. But it also shows the duplicate rows.

Example of Union All
The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

Union All query will be like,
select * from First
UNION ALL
select * from second

The result table will look like,

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 60

ID NAME

1 abhi

2 adam

2 adam

3 Chester

Intersect
Intersect operation is used to combine two SELECT statements, but it only retuns the records
which are common from both SELECT statements. In case of Intersect the number of
columns and datatype must be same. MySQL does not support INTERSECT operator.

Example of Intersect
The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

Intersect query will be,
select * from First
INTERSECT
select * from second

The result table will look like

ID NAME

2 adam

Minus
Minus operation combines result of two Select statements and return only those result which
belongs to first set of result. MySQL does not support INTERSECT operator.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 61

Example of Minus
The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

Minus query will be,
select * from First
MINUS
select * from second

The result table will look like,

ID NAME

1 abhi

SQL Sequence
Sequence is a feature supported by some database systems to produce unique values on
demand. Some DBMS like MySQL supports AUTO_INCREMENT in place of Sequence.
AUTO_INCREMENT is applied on columns, it automatically increments the column value by 1
each time a new record is entered into the table. Sequence is also some what similar to
AUTO_INCREMENT but its has some extra features.

Creating Sequence
Syntax to create sequences is,
CREATE Sequence sequence- name
start with initial - value
increment by increment - value
maxvalue maximum- value
cycle|nocycle

initial-value specifies the starting value of the Sequence, increment-value is the value by
which sequence will be incremented and maxvalue specifies the maximum value until which
sequence will increment itself. cycle specifies that if the maximum value exceeds the set limit,
sequence will restart its cycle from the begining. No cycle specifies that if sequence
exceeds maxvalue an error will be thrown.

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 62

Example to create Sequence
The sequence query is following
CREATE Sequence seq_1
start with 1
increment by 1
maxvalue 999
cycle ;

Example to use Sequence
The class table,

ID NAME

1 abhi

2 adam

4 alex

The sql query will be,
INSERT into class value(seq_1.nextval,'anu');

Result table will look like,

ID NAME

1 abhi

2 adam

4 alex

1 anu

Once you use nextval the sequence will increment even if you don't Insert any record into the
table

SQL View
A view in SQL is a logical subset of data from one or more tables. View is used to restrict data
access.
Syntax for creating a View,
CREATE or REPLACE view view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

Example of Creating a View
Consider following Sale table,

oid order_name previous_balance customer

11 ord1 2000 Alex

12 ord2 1000 Adam

DATA BASE MANAMENT SYSTEM

KCRI COLLEGE Page 63

13 ord3 2000 Abhi

14 ord4 1000 Adam

15 ord5 2000 Alex

SQL Query to Create View
CREATE or REPLACE view sale_view as select * from Sale where customer = 'Alex';

The data fetched from select statement will be stored in another object called sale_view. We
can use create seperately and replace too but using both together works better.

Example of Displaying a View
Syntax of displaying a view is similar to fetching data from table using Select statement.
SELECT * from sale_view;

Force View Creation
force keyword is used while creating a view. This keyword force to create View even if the
table does not exist. After creating a force View if we create the base table and enter values in
it, the view will be automatically updated.
Syntax for forced View is,
CREATE or REPLACE force view view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

Update a View
Update command for view is same as for tables.
Syntax to Update a View is,
UPDATE view- name
set value
WHERE condition;

If we update a view it also updates base table data automatically.

Read-Only View
We can create a view with read-only option to restrict access to the view.
Syntax to create a view with Read-Only Access
CREATE or REPLACE force view view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition with read - only

The above syntax will create view for read-only purpose, we cannot Update or Insert data into
read-only view. It will throw an error.

Types of View
There are two types of view,
¶ Simple View
¶ Complex View

Simple View Complex View

Created from one table Created from one or more table

Does not contain functions Contain functions

Does not contain groups of data Contains groups of data

